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SUMMARY

A computationally efficient overlap domsain decomposition
method (ODD) for modeling wave propagation in large
domains is presented. The ODD method divides a large
domain into several small overlapping subdomains. The
method allows the exchange of waves between the
subdomains through the overlapping regions without the need
for any intemal interface connecting conditions. For each
subdomain, calculations are performed independently. Thus,
it is possible to use different numerical algorithms in each
subdomain. The method not only saves computing time, but
also gives nearly the same accuracy as conventional methods.
This paper describes the ODD algorithm when wave
propagation in the subdomains are computed using the finite
difference and the pseudospectral methods. An example of
the method for a two-dimensional domain divided into 25
subdomains demonstrates the computing efficiency and
flexibility of the ODD method.

INTRODUCTION

Recent work has shown that significant advantages can be
obtained by using domain decompesition methods to
numerically  simulate  wave propagation.  Domain
decomposition methods are suitable for parallel computing
and, in addition, aliow different numerical methods to be
coupled together. To date, most of these approaches have
utifized non-overlapping subdomains {Tessmer, et al., 1992;
Carcione, 1991; Faccioli et af., 1996). A potential limitation
of non-overlapping methods are the need for interface
conditions at the (artificial} subdomain boundarics. Overlap
domain  decomposition (ODD} methods for parabolic
equations have been proposed by Kuznetsov {1988) and Chen
and Lazarov (1994) for finite element and finite difference
methods. Liac and McMechan {1993} applied ODD to
Fourier pseudospectral method for viscoacoustic modeling.
Israeli et al. {(1994) develped ODD methods with local
Fourier basis for parabolic probiems.

We present a noniterative overiap domain decomposition
method for wave propagation problems based on Huygen’s
Principle. A large domain is split into several small
overlapping subdomains. Waves are passed from one
subdemain to adjacent subdomains by the overlap regions.
The wavefield is independently calculated in cach subdomain
by using a noniterative explicit algorithm, The wavefield in
the whole domain is obtained from the local solutions in the
subdomains. Different subdommins can adopt different
methods such as finite difference, pseudospectral, and other
methods. . :

The advantages of this ODD method are: {1} parallel
computing technigques can be easily applied since each
subdomain is computed independently of its neighbors; (2)
different  subdomains can use different methods;, (3}
computing time and memory can be reduced by decreasing
the computing domain size and by tuming-off the
calculations in the subdomains which do not have wave
activity. N
The OD methods is described for a one-dimensional {10}
medium and implemented for finite difference (FD),
pseudospectral (PS) and mixed FD-PS methods. Examples of
method are given for both 1-D and 2-D cases.

ODD METHOD FOR 1-D PROBLEMS

The ODI method is described schematically in Fig. 1 for
one dimensional wave propagation. The method can be
described by the following steps:

Step . A large domain O [a, €] containing a wavefield fx.n)
is split into twe subdomains Q1 [a, d] with the fumction
HAfn) and Q2 1b, e} with the function f2(x,n) at time step n.
flixni=fixn xelad]linQl
Ptant=fian) xe[b, el in Q2
Subdomains 01 and Q2 have a common region o b, 4]
from the original domain Q which is called the overlap
region. Both subdomains carry a common part of the wave.
At the same time, the domain splitting introduces two
artificial boundaries in the overlap region Qo fb, 4 at point 4
for Q1 and at point b for Q.

Step 2. The solution at a time step n+1 in Q1 and £22 can be
calcutated independently in Q1 and (2. The overlap region
Qo {b, d} belongs to both subdomains and the wavefield in
Qo is independently calculated twice. Although the artificial
boundaries generate reflected waves, according to Huygen's
Principle, during the small time step df the reflected waves
should enly affect a small area of the dimension
dx=velocity*ds near the artificial boundaries. If the length of
the overlap region Qo is chosen longer than 2d, then the
reflected waves only occur within the half overlap regions
02 e, d] in Q1 and Qol [b, ¢] in Q2 near the boundaries,
The wavefield is not affected within the half overlap regions
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ol b, ] in Q1 and Qo2 [c, d} in £32 by these artificial
reflections.
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Step 3. Take the wavefield from the region {a, c} in Q1 and
the region [c, ¢] in Q2 to form the whole domain wavefield.

Tt D)= {fl(x,n+ 1 xela ¢}

Sf2x.n+1y xefc, €]
The reflected waves from the artificial boundaries are
climinated by only taking the contributions from the
respective solutions corresponding to the half of the overlap
region within each subdomain. The choice of size of the
overlap region depends on the numerical method used for
wave propagation,

ODD for 1-D finite difference (FD} method

The 1-D finite difference method can be directly
implemented into the ODD methed. Starting with the 1-D
wave equation for a medium with constent density p,

1 Sulx,t)  Fulx,) %
¢ al a&*
where u is the pressure and c is velocity, the explicit finite

difference scheme for fourth-order space and second-order
time accuracy is,
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To apply the ODD method to Eq. (2), the domain £2 is
divided inte two subdomains Q1 and Q2 (Fig. 2). The
amount of overlap between these two subdomains can be
determined as follows. The grid points ... , m-2, m-1, m
belong to £21 and the grid points m+1, m+2, m+3, ... belong
to (22, Assume that the pressures u(x,,f, ) and u(x,.7, ) a
time step n-1 and n are known values. In order 1o get
(X001 ey ) i (21, two previous time step values are needed
from the grid points m-2 through m+2, If Q1 is overlapped to
cover the grid peints m+1 and m+2, then u(x, 1., ycan be
solved within (31,
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Fig. 2 Overlap grid scheme for 1-D FIY method

The grid points m+1 and m+2 which originally only belonged
to Q2 now also belong to Q1. That is, these poinis form the
overlap region. #(x,,,Z,,,) can be calculated from Q1 just
as in the standard FD. Similarly, #(x,,,.7,,,) can be
calculated at the grid point m+1 in 02 using the values from
grid points m-1 and m+3. The total overlap region now spans
the grid points from m-1 through m+2. As can be seen in this
analysis, the overlap region only needs four grid points (Fig,
2) to get exactly the same results as the standard FI method
appiied to total domain Q. More grid points in the overlap
region would give same results,

Q2 >

1t shoutd be noted that the results at grid points m+1, m+2 in
Q1 and m-1, m in £)1 near the artificial boundarics are not
used and only the uncontaminated results on the inside region
are used to form the solution at time step n+1; Therefore, the
artificial boundaries have no adverse effects in the ODD
method.

ODD for 1-D Fourier pseudospectral (PS) method

The Fourier PS method has been successfully developed in
recent years for acoustic and elastic wave propagation
{Gazdag, 1981; Kosloff and Baysal, 1982; Kosloff et al,
1990; Furumura and Takenaka 1993). The ODD method can
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also be applied to the Fourier PS msthed. The PS method
solution of Eq. (1) is

w(x,, b0 =F2u(x,,, 1) = ul(x,,1, )
+02A12|:%Z("kf2)*aknfn}eﬁgx{l (3
=0

where k, =24 /(N*Ax),Ax=x,—-x, , and the ak,.t)
are the Fourier transform of u(x, 7.}

wk,,t )= ZH(xm g e 4)

Two problems wh1ch anse when applying the ODD method
developed in the precious section for the standard FD method
to Eq. (3) are the need to known the pressure » at all the grid
points of the previous time step and the wraparound which
oecurs at boundaries. Both these problems can circumvented
by applying a taper to the pressure field at the boundaries of
each subdomain { Liao and McMechen, 1993). By tapering
the pressure field to zero near the boundaries of all the
subdomains, Fourier wraparound contributions are zero and
the transfer of artificial waves is eliminated.

ODD for 1-D mixed methods

Because of the independence of the computing algorithm
used in subdomains of the ODD method, the FD and PS
methods can be easily coupled together. In order to get
smooth solutions across the subdomains, the different
methods should have approximately the same accuracy.

ODD METHOD FOR 2-D PROBLEMS
The 1-D ODD methodology can be directly appl:cd to 2-D
problems by overlapping-in two dimensions (Fig. 3).
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Fig. 3 Diagram for Z- ODD metiod

The following table gives the minimum numbers of overlap
grids for FD methods depending on their equations and
approximations for different problems.

T order | 4% order | 2 order | 40

FD Methods | acoustic acoustic acoustic or ] acoustic
(const p) {const p} elastic or elastic
Min overlap | 2 4 4 8

gird points

For the Fourier pseudospectrai method, the width of overlap
regions should be about one wavelength |

EXAMPLES

The finite difference method and pseudospetral method have
been widely studied {Alford et al., 1974, Kelly et al., 1976,
Dablain 1986, Gazdag, 1981, Kosloff and Baysal, 1982,
Fornberg, 1987, 1996; Kosloff ef al., 1990}, The solutions
obtained by using ODD FD and PS methods are compared
with the results by using standard FD and PS methods.

The physical model for the 1-D comparative study is
illustrated i Fig. 4. A Ricker wave with the central -
frequency of 25 Hz and wavelength of 120 m is used as the
source wavelet. The total model is 2560 m long. The velocity
is 3000 mfs. The distance between the source and receiver is
2200 m (approximately 18 wavelengths).
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Fig. 4 1-D physical model for ODD tests

The standard 4® order FD (FD4), PS, ODD PS, GDD FD4,
and mixed ODD PS-FD4 (PS in Q, FD in {21 and 02}
metheds are applied to the model. The ODD methods only
calcuiate the subdomains with wave energy.

*

The waveforms from different methods are showed in: Fig. 5.
The results match very well. The relative differences are less
than 0.02% between the ODD and standard methods.
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Fig. 5 Waveforms for 1-D model using different methods

D method
The 2-D acoustic model and a snapshot of  acoustic

waveficld calculated at time 0.4 sec with the ODD FS-FDM4
method {25 subdomains) are shown in Fig. 6.



The waveforms calculated by different methods for the 2-D
acoustic model are showed in Fig. 7. They all match very
well. The relative differences are less than 0.1% between the
ODD and standard methods, However, the GDD FD4 method
only takes about the half computing time of the standard FD4
method and ODD PS method tskes one third of the
computing time of the standard PS method. '
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Fig. 7 Waveforms from different ODD methods for 2-I acoustic model

Fig. 8 shows the elastic model and a snapshot at time 0.4 sec
of the vertical component of displacement caiculated from
the ODD  PS-FD4 (25 subdomains) method with a
horizontally polarized source.

SRS i

¥ig. & Horizontal displacements calculated by the QDD method

CONCLUSION

This paper presents a computationally efficient method for
simulating waves in large domains, The method uses an
overlapping domain decompesition to divide a large
computational domain into a series of smaller subdomains.
Different numerical algorithms for computing wave
propagation can be independently used in each subdomain.
The method not only saves computing time by turning off
computation in inactive subdomains but also gives the almost
same accuracy as standard methods. The method is based on
simple physics and can be easily implemented. This method
has been successfully applied to the finite difference method
and pseudospectral method and a combination of these
methods for acoustic and elastic problems. Future work will
apply this method to three dimensional problems.
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